Enantiomerically Enriched α-Methyl Amino Acids. Use of an Acyclic, Chiral Alanine-Derived Dianion with a High Diastereofacial Bias ${ }^{\dagger}$

David B. Berkowitz* and Marianne K. Smith
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304

Received October 21, 1994 ${ }^{8}$

Abstract

Hindered esters derived from N-benzoylalanine and the following chiral alcohols have been synthesized: (1) (-)-isopinocampheol, (2) (-)-trans-2-phenylcyclohexanol, and (3) (-)-8-phenylmenthol. Sequential treatment of these esters with LDA (1.2 equiv) and n-butyllithium (2.4 equiv) at $-78{ }^{\circ} \mathrm{C}$ in THF generates the corresponding chiral dianions. Alkylation of each of these with benzyl bromide reveals that only the (-)-8-phenylmenthyl auxiliary confers a high diastereofacial bias upon its derivative dianion. In fact, that dianion (6) consistently displays diastereomeric ratios in the range of $89: 11$ to $94: 6$ for alkylations with a spectrum of nine alkyl halides. If one recrystallization step is included, a single diastereomeric product may be obtained, as is demonstrated for the benzylation of 6 . Of particular note, the alkylation with 3,4-bis(tertbutyldimethylsilyl)oxy)benzyl bromide (18) (94:6 diasteriomeric ratio, 72% yield) constitutes a formal synthesis of the clinically important antihypertensive (S)- α-methyl-DOPA (Aldomet), in enantiomerically enriched form. In all cases studied, yields are markedly improved, yet diastereoselectivities unchanged, by the addition of 10% HMPA to the reaction milieu. The (-)-8-phenylmenthol chiral auxiliary is conveniently recovered via ester cleavage with $\mathrm{KO}_{2} / 18$-crown -6 , following alkylation. Complete deprotection affords enantiomerically enriched (S)- α-methyl amino acids, in all cases examined, indicating that dianion 6 displays a substantial bias in favor of $s i$ face alkylation. This sense of diastereoselection is consistent with a chain-extended, internal chelate model for the reactive conformation of the dianion.

Introduction

Owing to their biological properties, both as free amino acids and as components of peptides, and to their conformational properties, α-methyl amino acids have assumed an important role in bioorganic chemistry in recent years. For example, (\boldsymbol{S})- α-methyl-DOPA (Aldomet, an inhibitor of DOPA decarboxylase, is an important commercial antihypertensive. ${ }^{1}$ Substitution of (S)- α-methyltyrosine for tyrosine-4 in angiotensin II results in a peptide that is resistant to chymotryptic degradation, yet retains 93% of the pressor activity of the parent peptide. ${ }^{2}$ In the de novo design of peptides and proteins, several chiral α-methyl amino acids are useful building blocks for engineering helical secondary structure. For instance, (S)-isovaline (α-methylbutyrine) has been used to construct peptides with a 3_{10} helical structure. ${ }^{3 \mathrm{a}}$ On the other hand, (R)- α-methylaspartate is an especially effective building block for engineering α-helical structure. ${ }^{3 b}$
For all of these applications, optically pure α-methyl amino acids are desirable. One direct synthetic approach to these compounds involves the α-alkylation of a chiral alanine equivalent. This approach has, of course, been reduced to practice with the development of several cyclic, ${ }^{4}$ chiral alanine-derived monoanions which display a very high diastereofacial bias. Perhaps most notable

[^0]among these are the bis-lactim ether of Schöllkopf, 5 the imidazolidinones and oxazolidinones due to Seebach (selfreproduction of chirality), ${ }^{6}$ and the diphenyloxazinones developed by Williams. ${ }^{7}$ Ojima has also reported an acyclic ${ }^{4}$ chiral alanine enolate, in which chelation is elegantly used to control enolate geometry, and for which the chiral element resides exclusively in a β-lactam ring containing the α-amino group. ${ }^{8,9}$ The impressive diastereoselectivities recorded in these systems notwithstanding, a potential drawback to these approaches lies in the fact that, with one exception, ${ }^{10}$ the chiral directing element is destroyed in the process of deprotection.

We recently reported a general procedure for the
(4) These chiral alanine equivalents are "cyclic" in the sense that, in each case, the carboxyl and amino group are joined together in a cyclic manner as part of a four- to six-membered ring.
(5) (a) Schöllkopf, U.; Busse, U.; Lonsky, R.; Hinrichs, R. Liebigs Ann. Chem. 1986, 2150-2163. (b) Schöllkopf, U. Tetrahedron 1983, 39, 2085-2091. (c) Schollkopf, U. Pure Appl. Chem. 1983, 55, 17991806. (d) Schöllkopf, U.; Hausberg, H.-H.; Segal, M.; Reiter, U.; Hoppe, I.; Saenger, W.; Lindner, K. Liebigs Ann. Chem. 1981, 439-458.
(6) (a) Seebach, D.; Gees, T.; Schuler, F. Liebigs Ann. Chem. 1993, 785-799. (b) Altmann, E.; Nebel, K.; Mutter, M. Helv. Chim. Acta 1991, 74, 800-806. (c) Seebach, D.; Dziadulewicz, E.; Behrhardt, L.; Cantoreggi, S.; Fitzi, R. Liebigs Ann. Chem. 1989, 1215-1232. (d) Gander-Coquoz, M.; Seebach, D. Helv. Chim. Acta 1988, 71, 224-236. (e) Fitzi, R.; Seebach, D. Tetrahedron 1988, 44, 5277-5292. (f) Seebach, D.; Aebi, J. D.; Gander-Coquoz, M.; Naef, R. Helv. Chim. Acta 1987, 70, 1194-1216. (g) Fadel, A.; Salaün, J. Tetrahedron Lett. 1987, 28, 2243-2246. (h) Seebach, D.; Aebi, J. D. Helv. Chim. Acta 1985, 68, 1507-1518. (i) Seebach, D.; Aebi, J. D.; Naef, R.; Weber, T. Helv. Chim. Acta 1985, 68, 144-154. (j) Seebach, D.; Fadel, A. Helv. Chim. Acta 1985, 68, 1243-1250. (k) Seebach, D.; Aebi, J. D. Tetrahedron Lett. 1984, 25, 2545-2548. (1) Seebach, D.; Boes, M.; Naef, R.; Schweizer, W. B. J. Am. Chem. Soc. 1983, 105, 5390-5398.
(7) Williams, R. M. Aldrichim. Acta 1992, 25, 11-25. (b) Williams, R. M.; In, M.-N. J. Am. Chem. Soc. 1991, 113, 9276.
(8) (a) Ojima, I.; Chen, H.-J. C.; Qiu, X. Tetrahedron 1988, 44, 53075318. (b) Colson, P.-J.; Hegedus, L. S. J. Org. Chem. 1993, 58, 59185924.
(9) For detailed reviews, see: (a) Heimgartner, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 238. (b) Williams, R. M. Synthesis of Optically Active Amino Acids; Pergamon Press: Oxford, 1989; Vol. 7.

Scheme 1

Chain-folded conformer si-face alkylation $\Longrightarrow(S)$ - α-Methyl predicted $\quad \Longrightarrow$ amino acids
re-face alkylation would be favored
synthesis of racemic, α-vinyl amino acids via the formal vinylation of the parent amino acids. The key step in this procedure is the regiospecific, α-alkylation of N benzoylamino ester-derived dianions ${ }^{11}$ with ethylene oxide as vinyl cation equivalent. ${ }^{12}$ As a first step toward developing an asymmetric version of that chemistry, we set out to explore the behavior of analogous chiral dianions, in which all stereochemical information resides in the alcoholic component of the ester functionality. In particular, we chose to investigate chiral alanine-derived dianions initially, as diastereoselective alkylation of these would provide a direct route to enantiomerically enriched α-methyl amino acids, with the possibility of readily recycling the chiral auxiliary.
Our strategy was based upon the following premises. It is likely that dianions derived from N-benzoyl- α-amino esters assume an internal chelate structure, in which the electron-rich amide nitrogen enters into a five-ring chelate with the lithium counterion ion of the ester, allowing for control of enolate geometry. It is further presumed that dianions of this type, bearing an auxiliary of the trans-2-alkylcyclohexyl variety, will prefer a chainextended conformation over a chain-folded conformation, for steric reasons, as is illustrated in Scheme 1. Finally, if alkylations proceed largely through this chain-extended conformer, substantial diastereofacial selectivity is expected, provided that the 2 -substituent is an effective shielding group. It is important to note that Newcomb and Bergbreiter first described the behavior of one such "chiral alanine dianion" a decade ago. ${ }^{13}$ In that work, the dianion of N-benzoylalanine (- -menthyl ester was alkylated with three alkyl halides to produce protected α-methyl amino acids with modest diastereofacial selectivity $20-48 \%$ de [60:40-74:26 diasteriomeric ratios]. One is led to conclude that if the internal chelate, chainextended model (as illustrated in Scheme 1) correctly represents the reactive conformation of the dianion, then the menthyl blocking group (isopropyl) does not effectively screen the re face of the dianion. One could further surmise that by changing the nature of the blocking group one might be able to obtain high diastereofacial selectivity in the alkylation of acyclic chiral

[^1]
Scheme 2. Acyclic Chiral Alanine Dianions:

 Diastereofacial Biases(Electrophile: BnBr)
Diast.

alanine dianions of this type. Following this working hypothesis, we set about to systematically vary the structure of the chiral auxiliary and examine its effect on diastereoselectivity.

We chose the inexpensive and readily available alcohol, (-)-isopinocampheol, as a base line auxiliary for these studies. As illustrated in Scheme 2, one expects very limited face-shielding with this auxiliary. On the other hand, given the impressive diastereoselectivities observed by Ojima and Georg ${ }^{14}$ with the enolate monoanions of Whitesell [(-)-trans-2-phenylcyclohexyl] esters in the ester enolate-imine cyclocondensation, this auxiliary appeared to be an obvious candidate, for which substantial diastereofacial shielding might be expected (Scheme 2). Finally, we chose the (-)-8-phenylmenthol (Corey) auxiliary ${ }^{15}$ to assess the effect of inserting a one-carbon spacer between the cyclohexane ring and phenyl group upon diastereofacial bias of the alanine dianion.

Results and Discussion

The desired hindered esters $1-3$ were obtained in nearly quantitative yield by simple fusion of N-benzoylalanyl chloride ${ }^{16}$ with 1 equiv of isopinocampheol, trans-2-phenylcyclohexanol, or 8-phenylmenthol, respectively, at $75{ }^{\circ} \mathrm{C} .{ }^{17}$ This alcohol $/ N$-benzoylamino acid chloride fusion method (98% yield, 1 h reaction time, for the phenylmenthyl ester of N-benzoylalanine) is clearly superior to the Harada procedure [TsOH, Dean-Stark trap: $58-79 \%$ yield, 30 h reaction time, for the (less hindered) menthyl ester of alanine $]^{18}$ that is typically employed to synthesize hindered esters of amino acids. ${ }^{13}$
To define the relative diastereofacial biases of dianions 4-6, each of these was subjected to alkylation with

[^2]Table 1. Enantiomerically Enriched α-Methyl Amino Acids ${ }^{\boldsymbol{a}}$

RX	protected amino acid	yield (\%)	diast ratio ${ }^{\text {d }}$
$\mathrm{PhCH}_{2} \mathrm{Br}$	α-methylphenylalanine (9)	75	94:6 ($\geq 99: 1$) ${ }^{\text {e }}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$	isovaline ${ }^{c}$ (α-methylbutyrine) (10)	68	93:7
$t-\mathrm{BuO}_{2} \mathrm{CCH}_{2} \mathrm{Br}$	α-methylaspartate (11)	86	91:9
$\mathrm{PhCH}_{2} \mathrm{OCH}_{2} \mathrm{Br}$	α-methylserine ${ }^{\text {c (}}$ (12)	77	89:11
$\mathrm{PhCH}=\mathrm{CHCH}_{2} \mathrm{Br}$	α-methylcinnamylglycine ${ }^{\text {c (}}$ (13)		
$\mathrm{HCCCH}_{2} \mathrm{Br}$	α-methylpropargylglycine ${ }^{\text {c }}$ (14)	67	93:7
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Br}$	α-methylallylglycine ${ }^{\text {c }}$ (15)	69	94:6
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{I}$	α-methylleucine (16)	86	89:11
$\mathrm{ArCH}_{2} \mathrm{Br}^{\text {b }}$	α-methyl-DOPA ${ }^{\text {c }}$ (19)	72	94:6

${ }^{a} \mathrm{R}^{*} \mathrm{OH}=(-)-8$-phenylmenthol. ${ }^{b} \mathrm{Ar}=3,4$-bis((tert-butyldimethylsilyl)oxy)phenyl. ${ }^{c}$ Reference $24 .{ }^{d}$ Reference $22 .{ }^{e}$ After a single recrystallization (68% recrystallized yield).
benzyl bromide. ${ }^{19-21}$ Not surprisingly, the isopinocampheol auxiliary produced little diastereoselection. On the other hand, rather unexpectedly, ${ }^{14}$ the (-)-8-phenyl-menthol-derived dianion 6 showed a much greater diastereofacial bias than the trans-2-phenylcyclohexanolderived dianion 5 (Scheme 2). ${ }^{22}$ This initial screening result led us to pursue alkylations with dianion 6 and a considerable variety of alkyl halides.

Initially, we performed these alkylations in the absence of HMPA and obtained the following yields (single runs, indexed by electrophile): benzyl bromide (32%), tert-butyl bromoacetate (48%), benzyloxymethyl bromide (64%), cinnamyl bromide (44\%), propargyl bromide (33\%), allyl bromide (56%), and isobutyl iodide (18%). As can be seen from Table 1, in the presence of 10% HMPA, yields are significantly improved for the alkylation of dianion 6 with all alkyl halides surveyed, including the relatively hindered electrophile, isobutyl iodide. In all cases, the observed diastereomeric ratios were the same as those obtained in the absence of HMPA. This result is of practical utility and contrasts strikingly with recent reports of alkylations with related enolates, for which high diastereoselectivities were only achievable (i) by limiting the amount of additive (HMPA or TMEDA) to stoichiometric quantities ${ }^{13 \mathrm{~b}}$ or (ii) by resorting to the use of expensive, non-lithium bases. ${ }^{23}$

[^3]Employing this procedure, one can synthesize a considerable variety of protected, α-methyl amino acids in diastereomeric ratios of $89: 11-94: 6$ ($78-88 \%$ de) by alkylation of dianion 6 with the appropriate alkyl halide. Moreover, with the inclusion of a single recrystallization step, one can obtain enantiomerically pure α-methyl amino acids, as has been demonstrated for (\boldsymbol{S})- α-methylphenylalanine.

The absolute stereochemistry of the alkylation products has been determined unambiguously in three cases (α methylphenylalanine, α-methylleucine and α-methylaspartate) by hydrolysis (9 N HCl , reflux) of the alkylation products directly to the corresponding free, α-methyl amino acids. ${ }^{24,25}$ Comparison of the optical rotations of these with literature values indicates that, at least in these cases, the absolute stereochemistry of the predominant enantiomer is (S), in agreement with the chainextended, internal chelate model proposed for the reactive dianion conformation (Scheme 1).

While refluxing the alkylation products in aqueous HCl results in the hydrolysis of both the ester and amide protecting groups in a single step, it also leads to destruction of the chiral auxiliary. On the other hand, the (-)-8-phenylmenthol auxiliary may be conveniently recovered in good yield via ester cleavage with $\mathrm{KO}_{2} / 18$ crown $-6,{ }^{26}$ following alkylation (Scheme 3). This represents an important potential practical advantage of the "chiral alanine" alkylation procedure described here over existing alternatives. ${ }^{5-9}$

In summary, alkylation of the acyclic, chiral alaninederived dianion 6 with alkyl halides provides a convenient and direct procedure for the synthesis of enantiomerically enriched ($78-88 \%$ ee without recrystallization, 100% ee possible with a single recrystallization) (S)- α methyl amino acids. The sense of diastereoselection observed is consistent with a chain-extended, internal chelate model for the reactive conformation of the dian-

[^4]
Scheme 3

ion. We also note that the enantiomeric auxiliary, (+)8 -phenylmenthol, can be readily synthesized from (-)citronellal, ${ }^{27}$ and so the methodology described herein could readily be applied to the synthesis of (R)- α-methyl amino acids, ${ }^{3 \mathrm{~b}}$ as well. Of particular significance, the alkylation with 3,4-bis((tert-butyldimethylsilyl)oxy)benzyl bromide (18) constitutes a formal synthesis of the important antihypertensive, (S)- α-methyl-DOPA (Aldomet), in enantiomerically enriched form. In all cases studied, yields are markedly improved, yet diastereoselectivities unchanged, by the addition of 10% HMPA to the reaction milieu. Furthermore, the (-)-8-phenylmenthol auxiliary can be efficiently recycled by cleavage of the product ester with $\mathrm{KO}_{2} / 18$-crown- 6 in benzene.

Experimental Section

General. All general experimental procedures were as described previously. ${ }^{12}$ For the labeling studies, ${ }^{19}$ percent α-deuterium incorporation was determined by GC/MS (HP5890 gas chromatograph with an HP- 5972 mass spectral detector). All CI-mass spectra reported herein were obtained using this instrument. n-Butyllithium in hexanes (nominally 1.6 M) was purchased from Aldrich and titrated ${ }^{28}$ before each use.

General Procedure A. ($1 R, 2 S, 5 R$)-8-Phenylmenthyl N-Benzoyl-(S)-alaninate (3a)/(1R,2S,5R)-8-Phenylmenthyl \boldsymbol{N}-Benzoyl- (\boldsymbol{R})-alaninate (3b). A mixture of (-)-8phenylmenthol ${ }^{29}(3.00 \mathrm{~g}, 12.9 \mathrm{mmol})$ and N -benzoylalanyl chloride ${ }^{16}$ ($3.01 \mathrm{~g}, 14.2$ mmol; freshly prepared from N-benzoyl-L-alanine) was heated to $78^{\circ} \mathrm{C}$ for 1 h . The crude product was partitioned between EtOAc (25 mL) and NaHCO_{3} (aqueous, 30 mL). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. Flash chromatography (15% EtOAc/hexanes) provided 3 b ($1.64 \mathrm{~g}, 31 \%$), as a white solid, in a first fraction, and $3 \mathbf{a}(3.52 \mathrm{~g}, 67 \%)$ also as a white solid, in a second fraction.

3a: mp 98-101 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.78-1.59$ ($\mathrm{m}, 6 \mathrm{H}$), 0.86 (d, $J=6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.23 (s, 3 H), 1.33 (d, $J=7$ $\mathrm{Hz}, 3 \mathrm{H}$), $1.33(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.07$ (app dt, $J=4,12 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\operatorname{app} q u i n t e t, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (app dt, $J=4,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.52(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.48-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.8,21.6,26.1,27.0,27.5,31.3,34.4,40.0,41.6,49.1,50.0$, $76.6,125.4,125.5,127.0,128.0,128.5,131.5,134.2,150.7$, 166.6, 172.1; MS (methane - CI) 448 ($0.2, \mathrm{M}+41$), 436 (0.4 , $\mathrm{M}+29), 408\left[2.4,(\mathrm{M}+\mathrm{H})^{+}\right], 194(100), 176(9.9), 105(34)$. Anal. Caled for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{3}$: C, 76.63; H, 8.16; N, 3.44. Found: C, 76.84; H, 8.41; N, 3.51 .

3b: mp 98-101 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87-1.13$ (m, 3 H), $0.90(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.22(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7$
$\mathrm{Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.72(\mathrm{~m}, 1$ H), $1.78-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.09(\mathrm{app} \mathrm{dt}, J=4,12 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (app quintet, $J=7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.89 (app dt, $J=4,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.29$ (m, 4 H), $7.45-7.48$ (m, 2 H), 7.51-7.54 (m, 1 H), 7.76-7.78 (m, 2 H); MS (methane - CI) 448 ($0.2, \mathrm{M}+41$), 436 ($0.4, \mathrm{M}+$ 29), $408\left[3,(\mathrm{M}+\mathrm{H})^{+}\right], 194$ (100), 176 (9.2), 105 (31.7). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{3}$: C, 76.63; H, 8.16; N, 3.44. Found: C, 76.89; H, 8.42; N, 3.53 .

Determination of α-Stereochemistry. From 3a (75.0 $\mathrm{mg}, 184 \mu \mathrm{~mol}$), following general procedure D , was obtained N-benzoyl-(S)-alanine ($27.2 \mathrm{mg}, 77 \%$) as a white solid: $[\alpha]_{\mathrm{D}}$ $+34.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}+26.7^{\circ}(c 1.0,0.1 \mathrm{~N} \mathrm{NaOH})\left[\mathrm{lit} .{ }^{30 \mathrm{a}}\right.$ $[\alpha]_{\mathrm{D}}=-35^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the (R)-isomer, lit. ${ }^{30 \mathrm{~b}}[\alpha]^{21} \mathrm{D}=$ $+26.7^{\circ}(c 1.0,0.1 \mathrm{~N} \mathrm{NaOH})$ for the (S)-isomer].

From $3 \mathrm{bb}(75.0 \mathrm{mg}, 184 \mu \mathrm{~mol})$, following general procedure D, was obtained N-benzoyl- (R)-alanine ($25.4 \mathrm{mg}, 72 \%$) as a white solid: $[\alpha]_{D}-34.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}-26.6^{\circ}(c 1.0,0.1$ $\mathrm{N} \mathrm{NaOH})\left[\right.$ lit. ${ }^{30 \mathrm{a}}[\alpha]_{D}=-35^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the (R)-isomer, lit. ${ }^{30 \mathrm{~b}}[\alpha]^{21} \mathrm{D}=+26.7^{\circ}(c 1.0,0.1 \mathrm{~N} \mathrm{NaOH})$ for the (S)-isomer].
(1R,2S)-2-Phenylcyclohexyl N-Benzoyl-(S)-alaninate (2a)/(1R,2S)-2-Phenylcyclohexyl N-Benzoyl-(R)-alaninate (2b). From ($1 R, 2 S$)-2-phenylcyclohexanol ${ }^{31}$ ($250 \mathrm{mg}, 1.42$ mmol) and N-benzoylalanyl chloride ${ }^{16}$ ($301 \mathrm{mg}, 1.42 \mathrm{mmol}$), following general procedure A, was obtained $2(476 \mathrm{mg}, 95 \%)$, as a 1.1:1 mixture of diastereomers, epimeric at the α-carbon. Major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86$ (d, J $=7,3 \mathrm{H}), 1.25-1.97(\mathrm{~m}, 7 \mathrm{H}), 2.13-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.73$ (m, 1 H), $4.51-4.63$ (app quintet, $J=7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.04-5.09$ (app dt, $J=4,11 \mathrm{~Hz}, 1 \mathrm{H}$), $6.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.12-7.27$ (m, 5 H), 7.38-7.50 (m, 3 H), 7.69-7.71 (m, 2 H). Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25-1.97(\mathrm{~m}, 7$ H), 1.28 (d, $J=7,3 \mathrm{H}$), $2.13-2.15$ (m, 1 H), $2.67-2.73$ ($\mathrm{m}, 1$ H), 4.45-4.53 (app quintet, $J=7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.00-5.05$ (app $\mathrm{dt}, J=4,11 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.27$ (m, $5 \mathrm{H}), 7.38-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.71(\mathrm{~m}, 2 \mathrm{H})$; MS (2a/2b; methane - CI) $392(1, \mathrm{M}+41), 380(2, \mathrm{M}+29), 352$ [21, (M $+\mathrm{H}^{+}{ }^{+}$, 194 (100), 159 (56), 105 (18). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25}{ }^{-}$ $\mathrm{NO}_{3}: \mathrm{C}, 75.19 ; \mathrm{H}, 7.17 ; \mathrm{N}, 3.99$. Found (2a/2b): C, 75.46; H, 7.11; N, 4.10.
($1 R, 2 R, 3 R, 5 S$)-2-Isopinocampheyl \boldsymbol{N}-Benzoyl-(S)-alaninate (1a)/(1R,2R,3R,5S)-2-Isopinocampheyl N-Benzoyl(R)-alaninate ($\mathbf{1 b}$). From ($1 R, 2 R, 3 R, 5 S$)-isopinocampheol ($250 \mathrm{mg}, 1.62 \mathrm{mmol}$) and N-benzoylalanyl chloride ${ }^{16}(377 \mathrm{mg}$, 1.78 mmol), following general procedure A, was obtained 1 (528 $\mathrm{mg}, 99 \%$) as mixture ($1: 1$) of diastereomers. Listed NMR peaks are common to both diastereomers, unless otherwise stated: ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95$ (s, 3 H), $1.04(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}$; from one diastereomer), 1.07 (d, $J=3 \mathrm{~Hz}, 1 \mathrm{H}$; from other diastiomer), $1.11(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}$; from one diastereomer), 1.52 (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$; from other diastereomer), $1.63-1.69$ (ddd, $J=3,4,14 \mathrm{~Hz}, 1$ H ; from one diastereomer), $1.71-1.77$ (ddd, $J=3,4,14 \mathrm{~Hz}, 1$ H ; from other diastereomer), $1.80-1.85$ ($\mathrm{m}, 1 \mathrm{H}$), 1.91-1.96 ($\mathrm{m}, 1 \mathrm{H}$), 2.09-2.18(m, 1 H$), 2.33-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.63$ ($\mathrm{m}, 1 \mathrm{H}$), $4.72-4.79(\mathrm{dq}, J=5,7 \mathrm{~Hz}, 1 \mathrm{H}$; from one diastereomer), 4.74-4.81 (dq, $J=5,7 \mathrm{~Hz}, 1 \mathrm{H}$; from other diastereomer), $5.08-5.13$ (app quintet, $J=5 \mathrm{~Hz}, 1 \mathrm{H}$; from one diastereomer), $5.09-5.14$ (app quintet, $J=5 \mathrm{~Hz}, 1 \mathrm{H}$; from other diastereomer), 6.81 (broad s, 1 H), $7.40-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.49-7.52 (m, 1 H), 7.78-7.81 (m, 1 H). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~T}^{-}$ $\mathrm{NO}_{3}: \mathrm{C}, 72.92 ; \mathrm{H}, 8.26 ; \mathrm{N}, 4.25$. Found (1a/1b): C, 72.96; H, 8.23; N, 4.36 .

General Procedure B. ($1 R, 2 S, 5 R$)-8-Phenylmenthyl \boldsymbol{N}-Benzoyl-(S)- α-methylphenylalaninate (9). To a solution of diisopropylamine ($120 \mu \mathrm{~L}, 0.797 \mathrm{mmol}$) and HMPA (1.6 mL) in THF (8 mL) at $-78^{\circ} \mathrm{C}$ was added n-butyllithium $(0.62 \mathrm{~mL}$, 1.28 M in n-hexane), and the resulting solution was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then cooled to $-78^{\circ} \mathrm{C}$. Then, $\mathbf{3 a}$ (250 $\mathrm{mg}, 0.613 \mathrm{mmol}$) in THF (8 mL) at $-78^{\circ} \mathrm{C}$ was added via

[^5][^6]cannula, followed by n-butyllithium ($1.15 \mathrm{~mL}, 1.3 \mathrm{M}$ in n-hexane), and the resulting deep red solution stirred for 1 h at $-78^{\circ} \mathrm{C}$. Benzyl bromide ($115 \mathrm{mg}, 0.675 \mathrm{mmol}$) in THF (1 mL) at $-78^{\circ} \mathrm{C}$ was then added via cannula. After being stirred at $-78^{\circ} \mathrm{C}$ for 45 min , the reaction mixture was poured into ether (30 mL) and $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, 30 mL). After further extraction with ether ($3 \times 20 \mathrm{~mL}$), the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, evaporated, and chromatographed (10% EtOAc/hexane) to give 9 ($229 \mathrm{mg}, 75 \%, 88 \%$ de) as a white solid. One recrystallization (50 mg) from ether provided an analytical sample of 9 ($34 \mathrm{mg}, 100 \% \mathrm{de}$): $\mathrm{mp} 149-151^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88-2.19(\mathrm{~m}, 8 \mathrm{H}), 0.95(\mathrm{~d}, J=$ $6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J$ $=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.02(\mathrm{app} \mathrm{dt}, J$ $=4,11 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.44-7.47$ (m, 2 H), $7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7,23.4,25.8,27.3,28.2,31.4,34.5,40.1$, $40.3,41.6,49.9,61.2,77.8,125.4,125.6,126.7$, 126.9, 128.1, $128.2,128.5,130.5,131.4,135.2,136.6,151.0,166.9,173.3$. Anal. Caled for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{3}$: C, 79.64; $\mathrm{H}, 7.90 ; \mathrm{N}, 2.81$. Found: C, 79.61 ; H, $7.83 ; \mathrm{N}, 2.82$.
($1 R, 2 R, 3 R, 5 S$) 2 -Isopinocampheyl N-Benzoyl.((S) - α-methylphenylalaninate ($\mathbf{7 a}$)/($1 R, 2 R, 3 R, 5 S$)-2-Isopinocampheyl N-Benzoyl (R) - α-methylphenylalaninate ($(7 \mathrm{~b})$. From $1 \mathrm{a} / 1 \mathrm{~b}$ ($30.0 \mathrm{mg}, 91 \mu \mathrm{~mol}$) and benzyl bromide ($16.0 \mathrm{mg}, 91$ μ mol), following general procedure B , was obtained $7 \mathrm{a} / 7 \mathrm{7b}(30.3$ $\mathrm{mg}, 79 \%, 6 \%$ de) after flash chromatography (10% EtOAc hexane). Major diastereomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.96(\mathrm{~s}, 3 \mathrm{H}), 1.05-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24$ $(\mathrm{s}, 3 \mathrm{H}), 1.65-1.67(\operatorname{appt}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.83-$ $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.37-$ 2.42 (m, 1 H$), 2.57-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.14$ (app quintet, $J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.20(\mathrm{~m}, 3 \mathrm{H})$, $7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.68(\mathrm{~m}, 2 \mathrm{H})$. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ ($\mathrm{s}, 3$ $\mathrm{H}), 1.05-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$, $1.68-1.70$ (app $\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.87$ $(\mathrm{m}, 1 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.42$ (m, 1 H) $, 2.57-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}$, $J=14 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.14$ (app quintet, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.38-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.68(\mathrm{~m}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{33} \mathrm{NO}_{3}$: C, $77.29 ; \mathrm{H}, 7.93 ; \mathrm{N}, 3.34$. Found (7a/ 7b): C, 77.16; H, 8.12; N, 3.36.
($1 R, 2 S$)-2-Phenylcyclohexyl N-Benzoyl-(S)- α-methylphenylalaninate (8a)/(1R,2S)-2-Phenylcyclohexyl N-Benzoyl(\boldsymbol{R})- α-methylphenylalaninate (8 b). From $\mathbf{2 a} / \mathbf{2 b}$ ($30 \mathrm{mg}, 85$ $\mu \mathrm{mol}$) and benzyl bromide ($16 \mathrm{mg}, 94 \mu \mathrm{~mol}$), following general procedure B, was obtained $\mathbf{8 a} / \mathbf{8 b}(22 \mathrm{mg}, 57 \%, 10 \%$ de) after SiO_{2} chromatography ($10 \% \mathrm{EtOAc}$ /hexane). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87-2.25(\mathrm{~m}, 8 \mathrm{H}), 1.16$ $(\mathrm{s}, 3 \mathrm{H}), 2.75-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}$, $J=14 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.11(\operatorname{app~dt}, J=4,11 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.01-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.45(\mathrm{~m}, 9 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.53-$ $7.59(\mathrm{~m}, 2 \mathrm{H})$. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87-2.25(\mathrm{~m}, 8 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.95$ (d, $J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.01(\mathrm{app}$ $\mathrm{dt}, J=4,11 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$, $6.95-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.45(\mathrm{~m}, 9 \mathrm{H})$, 7.47-7.49 (m, 1 H), 7.53-7.59 (m, 2 H). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{3}$: $\mathrm{C}, 78.88 ; \mathrm{H}, 7.07 ; \mathrm{N}, 3.17$. Found (8a/8b): C, 78.84; H, 7.32; N, 3.08.
($1 R, 2 S, 5 R$)-8-Phenylmenthyl N-Benzoyl-($(S)-\alpha$-methylisovalinate (10). ${ }^{24}$ From 3a ($250 \mathrm{mg}, 0.613 \mathrm{mmol}$) and iodoethane ($105 \mathrm{mg}, 0.675 \mathrm{mmol}$), following general procedure B , was obtained 10 ($180 \mathrm{mg}, 68 \%, 86 \%$ de), after SiO_{2} chromatography (10% EtOAchexane): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.75-1.62(\mathrm{~m}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}$, $J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.75-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.43(\mathrm{~m}, 1 \mathrm{H}), 4.96-$ 5.01 (app dt, $J=4,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02 (s, 1 H), $7.14-7.17$ (m, $1 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.74-7.80(\mathrm{~m}, 2$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.4,21.7,22.1,25.4,27.2$, $28.9,29.1,31.4,34.4,40.2,41.6,49.9,61.4,77.3,125.4,125.6$,
$126.9,128.1,128.5,131.3,135.2,150.6,166.2,174.3$; MS (methane - CI) $436\left[1,(\mathrm{M}+\mathrm{H})^{+}\right], 222(100), 176(20), 105$ (57). Anal. Caicd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{3}: \mathrm{C}, 77.20 ; \mathrm{H}, 8.56 ; \mathrm{N}, 3.22$. Found: C, 77.10; H, 8.68; N, 3.22.
\boldsymbol{N}-Benzoyl-(S)- α-methylaspartic Acid $\alpha-(1 R, 2 S, 5 R)$-8Phenylmenthyl, β-tert-Butyl Ester (11). From 3 aa (250 mg , 0.613 mmol) and tert-butyl bromoacetate ($132 \mathrm{mg}, 0.675$ mmol), following general procedure B, was obtained 11 (276 $\mathrm{mg}, 86 \%, 82 \%$ de), after flash chromatography (10% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.78-1.59(\mathrm{~m}, 6 \mathrm{H})$, $0.85(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9$ H), $1.50(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H})$, $3.33(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.01$ (app dt, $J=4,10.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 4$ $\mathrm{H}), 7.75-7.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7,22.3$, $25.9,27.2,28.0,28.3,31.3,34.5,40.1,40.9,41.2,49.8,58.1$, $77.6,81.1,125.4,125.6,126.9,128.1,128.5,131.3,135.0,150.9$, 166.4, 169.9, 173.2. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{NO}_{5}: \mathrm{C}, 73.67 ; \mathrm{H}$, 8.31; N, 2.69. Found: C, $73.55 \mathrm{H}, 8.59$; N, 2.59 .
(1R,2S,5R)-8-Phenylmenthyl N-Benzoyl- O-benzyl-(S)-α-methylserinate (12). ${ }^{24}$ From $3 \mathbf{a}(250 \mathrm{mg}, 0.613 \mathrm{mmol}$) and benzyloxymethyl bromide ($136 \mathrm{mg}, 0.675 \mathrm{mmol}$), following general procedure B, was obtained 12 ($214 \mathrm{mg}, 66 \%, 78 \% \mathrm{de}$), after flash chromatography (10% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75-1.54(\mathrm{~m}, 6 \mathrm{H}), 0.80(\mathrm{~d}, J=6 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.97-2.02(\mathrm{~m}, 2$ $\mathrm{H}), 3.65(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.98(\mathrm{app} \mathrm{dt}, J$ $=4,11 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 10 \mathrm{H})$, $7.40-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.75(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,21.6,25.4,27.1,28.5,31.3$, $34.4,40.1,41.3,49.9,61.3,72.1,73.4,77.6,125.4,125.5,126.9$, $127.0,127.6,128.1,128.3,128.5,131.5,134.9,137.8,150.7$, 167.1, 172.6. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{4}: \mathrm{C}, 77.39 ; \mathrm{H}, 7.83$; N, 2.65. Found: C, 77.12; H, 7.67; N, 2.64.
($1 R, 2 S, 5 R$)-8-Phenylmenthyl N-Benzoyl-(S)- α-methylcinnamylglycinate (13). ${ }^{24}$ From 3 aa ($30 \mathrm{mg}, 74 \mu \mathrm{~mol}$) and trans-cinnamyl bromide ($16 \mathrm{mg}, 81 \mu \mathrm{~mol}$), following general procedure B, was obtained 13 ($26 \mathrm{mg}, 66 \%, 88 \%$ de), after chromatography (10% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.78-1.60(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.98-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.04-$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.68$ (dd, $J=7,14 \mathrm{~Hz}, 1 \mathrm{H}$), $3.19-3.24$ (dd, $J=7,14 \mathrm{~Hz}, 1 \mathrm{H}$), $4.94-5.01$ ($\operatorname{app} \mathrm{dt}, J=4,10.5 \mathrm{~Hz}, 1$ H), $5.99-6.04$ (app quintet, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.12-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.48(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,22.3,25.5,27.2,28.7,31.4,34.4,39.4,40.1,42.0,49.9$, $60.8,77.6,123.8,125.4,125.6,126.2,126.9,127.4,128.1,128.4$, $128.5,131.4,134.2,135.2,137.0,150.7,166.5,173.7$; MS (EI) $523\left(0.14, \mathrm{M}^{+}\right), 402(8), 188(78), 105$ (100); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{NO}_{3} 523.3086$, obsd 523.3069 .
($1 R, 2 S, 5 R$)-8-Phenylmenthyl N-Benzoyl-(S)- α-methylpropargylglycinate (14). ${ }^{24}$ From $3 \mathrm{a}(30 \mathrm{mg}, 74 \mu \mathrm{~mol}$) and propargyl bromide ($9.6 \mathrm{mg}, 81 \mu \mathrm{~mol}$), following general procedure B, was obtained 14 ($22 \mathrm{mg}, 67 \%, 86 \%$ de), after SiO_{2} chromatography (10% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.81-1.61(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.96(\operatorname{app} \mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05-2.15$ (m, 2 H), $2.73-2.77$ (dd, $J=2,17 \mathrm{~Hz}, 1 \mathrm{H}$), 2.993.03 (dd, $J=2,17 \mathrm{~Hz}, 1 \mathrm{H}$), $4.95-5.00$ (app dt, $J=4,10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 4$ $\mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.79(\mathrm{~m}, 2$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,22.0,26.1,26.2,27.2$, $27.9,31.4,34.5,40.0,41.3,49.8,59.3,71.1,77.8,79.6,125.4$, $125.5,127.0,127.1,128.2,128.5,131.5,150.9,166.7,172.6$; MS (EI) $445\left(2, \mathrm{M}^{+}\right), 406\left(2,-\mathrm{C}_{3} \mathrm{H}_{3}\right), 232(71), 186(36)$; HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{3} 445.2617$, obsd 445.2612 .
(1R,2S,5R)-8-Phenylmenthyl N-Benzoyl-(S)- α-methylallylglycinate (15). ${ }^{24}$ From $\mathbf{3 a}(30.0 \mathrm{mg}, 74 \mu \mathrm{~mol})$ and allyl bromide ($9.8 \mathrm{mg}, 81 \mu \mathrm{~mol}$), following general procedure B , was obtained 15 ($23 \mathrm{mg}, 69 \%, 88 \%$ de), after flash chromatography (10% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.80-1.60$ $(\mathrm{m}, 6 \mathrm{H}), 0.87(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.53(\mathrm{dd}, J=7,14 \mathrm{~Hz}$, 1 H), 2.96-3.00 (dd, $J=7,14 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.98(\mathrm{app} \mathrm{dt}, J$
$=4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.09(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.12(\mathrm{~d}$, $J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.66(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.15$ ($\mathrm{m}, 1 \mathrm{H}$), $7.23-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.50$ (m, 1 H), $7.73-7.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $21.7,22.2,25.6,27.2,28.6,31.4,34.4,40.1,40.3,41.7,49.9$, $60.1,77.4,119.4,125.4,125.6,126.8,128.1,128.5,131.3,132.3$, 135.2, 150.8, 166.4, 173.7. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}_{3}$: C, 77.82; H, 8.33; N, 3.13. Found: C, 77.61; H, 8.46; N, 3.00.
($1 R, 2 S, 5 R$)-8-Phenylmenthyl N-Benzoyl-(S)- α-methylleucinate (16). From 3a ($200 \mathrm{mg}, 0.491 \mathrm{mmol}$) and isobutyl iodide ($99.3 \mathrm{mg}, 0.540 \mathrm{mmol}$), following general procedure B , was obtained 16 ($196 \mathrm{mg}, 86 \%, 78 \%$ de), after SiO_{2} chromatography (10% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.75-1.71(\mathrm{~m}, 8 \mathrm{H}), 0.85-0.95(\mathrm{~m}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.37$ (s , $3 \mathrm{H}), 1.55$ (s, 3 H), $2.03-2.15$ (m, 2 H), $2.28-2.35$ (dd, $J=6$, $14 \mathrm{~Hz}, 1 \mathrm{H}$), $4.93-5.01$ (app dt, $J=4,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10-$ 7.20 (m, 2 H), $7.22-7.33$ (m, 4 H), 7.38-7.51 (m, 3 H), 7.737.79 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,23.4,24.0$, $25.1,25.4,27.3,28.8,31.4,34.4,40.1,41.5,43.8,49.8,60.8$, $77.7,125.4,125.5,126.8,128.1,128.5,131.3,135.3,150.6$, 166.2, 175.0. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{3}: \mathrm{C}, 77.71 ; \mathrm{H}, 8.91$; N, 3.02. Found: C, 77.86; H, 8.73; N, 2.86.
3,4-Bis((tert-butyldimethylsilyl)oxy)toluene (17). To a solution of 3 -methylcatechol ($1.0 \mathrm{~g}, 8.1 \mathrm{mmol}$), 4-(dimethylamino) pyridine ($98 \mathrm{mg}, 81 \mu \mathrm{~mol}$), and imidazole ($2.2 \mathrm{~g}, 32$ mmol) in DMF (50 mL) was added tert-butyldimethylsilyl chloride ($3.04 \mathrm{~g}, 20.1 \mathrm{mmol}$). The resulting reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 4 h and then poured into NaHCO_{3} (aqueous, 75 mL) and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Chromatrography ($20 \% \mathrm{EtOAc} /$ hexane) provided 17 ($2.82 \mathrm{~g}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $0.98(\mathrm{~s}, 9 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 6.58-6.71(\mathrm{~m}, 3 \mathrm{H}) ;$ MS (methane $-\mathrm{CI}) 381(6, \mathrm{M}+29), 353\left[30,(\mathrm{M}+\mathrm{H})^{+}\right], 337(47), 295(100)$, 115 (40). Anal. Caled for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2}: \mathrm{C}, 64.71 ; \mathrm{H}, 10.29$. Found: C, 64.72; H, 10.08 .

3,4-Bis((tert-butyldimethylsilyl)oxy)benzyl Bromide (18). To a solution of $17(1.50 \mathrm{~g}, 4.26 \mathrm{mmol}), N$-bromosuccinimide ($835 \mathrm{mg}, 4.69 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{mg}, 43 \mu \mathrm{~mol})$ in $\mathrm{CCl}_{4}(9 \mathrm{~mL})$ was added benzoyl peroxide ($103 \mathrm{mg}, 0.426 \mathrm{mmol}$). The resulting reaction mixture was heated to reflux for 12 h and then cooled to $0^{\circ} \mathrm{C}$. Hexane (20 mL) was added and the mixture filtered. The filtrate was washed with NaHCO_{3} (aqueous, 5 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford $18(1.74 \mathrm{~g}, 95 \%)$ as a pale yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.18(\mathrm{~s}, 6 \mathrm{H})$, $0.19(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 6.73-$ $6.76(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 2 \mathrm{H})$; MS (EI) $432\left(1.5, \mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}\right), 430\left(1.5, \mathrm{M}^{+}\right.$for ${ }^{79} \mathrm{Br}$), 375 (3.5), 373 (3.3), 351 (13), 73 (100); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Br}\left({ }^{79} \mathrm{Br}\right) 430.1343$, obsd 430.1343.
($1 R, 2 S, 5 R$)-8-Phenylmenthyl N-Benzoyl-3'-bis((tert-bu-tyldimethylsilyl)oxy)-(S)- α-methylphenylalaninate (19). ${ }^{24}$ From $3 \mathrm{a}(300 \mathrm{mg}, 0.736 \mathrm{mmol}$) and 18 ($349 \mathrm{mg}, 0.810 \mathrm{mmol}$), following general procedure B, was obtained $19(402 \mathrm{mg}, 72 \%$, 88% de), after flash chromatography (10% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07$ ($\mathrm{s}, 3 \mathrm{H}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}$), 0.15 (s , $3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.85-1.62(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$, 0.91 (s, 9 H), 0.95 ($\mathrm{s}, 9 \mathrm{H}$), 1.23 ($\mathrm{s}, 3 \mathrm{H}$), 1.32 ($\mathrm{s}, 3 \mathrm{H}$), 1.49 (s , $3 \mathrm{H}), 1.99-2.14(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J$ $=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.95$ (app dt, $J=4,11 \mathrm{~Hz}, 1 \mathrm{H}$), $6.49(\mathrm{~s}$, $1 \mathrm{H}), 5.64-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta-4.24,-4.18,-4.14,-4.03,18.3,18.4,21.3,23.1$, $25.8,25.9,27.3,28.1,31.3,31.4,34.5,39.9,40.0,41.4,49.9$, $60.7,77.5,120.3,120.4,123.3,123.5,125.2,125.3,125.5,127.0$,
128.1, 128.2, 128.4, 128.7, 129.5, 131.3, 135.0, 145.8, 146.3, 151.1, 166.6, 173.4; HRMS (FAB, 3-NOBA, LiI) calcd for $\mathrm{C}_{45} \mathrm{H}_{67} \mathrm{NO}_{5} \mathrm{Si}_{2} \mathrm{Li}\left[(\mathrm{M}+\mathrm{Li})^{+}\right] 764.4718$, obsd 764.4718 .
General Procedure C. (S)- α-Methylphenylalanine (20). A suspension of $9(110 \mathrm{mg}, 211 \mu \mathrm{~mol})$ in $9 \mathrm{~N} \mathrm{HCl}(2.2 \mathrm{~mL})$ was heated at $120^{\circ} \mathrm{C}$ in a sealed vessel for 7 h . The crude reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the aqueous layer evaporated in vacuo. The residue was applied to a Dowex 50×8 ion exchange column. After washing with several column volumes of $\mathrm{H}_{2} \mathrm{O}$, elution with $10 \% \mathrm{NH}_{4} \mathrm{OH}$ afforded $20(20.9 \mathrm{mg}, 53 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}(88 \% \mathrm{ee})$ $-18.9^{\circ}\left(c=1.0, \mathrm{H}_{2} \mathrm{O}\right)\left[1 \mathrm{lit} .^{32}[\alpha]_{\mathrm{D}}-21.5^{\circ}\left(c 1, \mathrm{H}_{2} \mathrm{O}\right)\right]$.
(S)- α-Methylaspartate (21). From 11 ($150 \mathrm{mg}, 287 \mu \mathrm{~mol}$) in $9 \mathrm{~N} \mathrm{HCl}(2.8 \mathrm{~mL})$, following general procedure C , was obtained $21(24.2 \mathrm{mg}, 58 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}(82 \%$ ee) $+43.1^{\circ}\left(c 1.2, \mathrm{H}_{2} \mathrm{O}\right)\left[\mathrm{lit} . \mathrm{E}^{68}[\alpha]_{\mathrm{D}}+52.8^{\circ}\left(c 0.60, \mathrm{H}_{2} \mathrm{O}\right)\right]$.
(S)- α-Methylleucine (22). From 12 ($150 \mathrm{mg}, 323 \mu \mathrm{~mol}$) in $9 \mathrm{~N} \mathrm{HCl}(3.2 \mathrm{~mL})$, following general procedure C , was obtained 22 ($20.2 \mathrm{mg}, 43 \%$) as a white solid: [$\alpha l_{\mathrm{D}}(78 \%$ ee) $+26.1^{\circ}\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)\left[\mathrm{lit} .{ }^{33}[\alpha]_{\mathrm{D}}+34.2^{\circ}\left(c 3, \mathrm{H}_{2} \mathrm{O}\right)\right]$.

General Procedure D. N-Benzoyl-(\mathbf{S})- α-methylphenylalanine (23). To a solution of $9(30.0 \mathrm{mg}, 60.3 \mu \mathrm{~mol})$ and 18 -crown-6 ($16.0 \mathrm{mg}, 60.3 \mu \mathrm{~mol}$) in benzene (2 mL) was added $\mathrm{KO}_{2}(26.0 \mathrm{mg}, 362 \mu \mathrm{~mol})$, and the mixture was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 4 d . The resulting mixture was partitioned between $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aqueous, 5 mL) and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to give (-)-8phenylmentho ${ }^{25}$ ($14 \mathrm{mg}, 76 \%$). The aqueous layer was acidified to pH 2 with $10 \% \mathrm{KHSO}_{4}$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, evaporated, and chromatographed ($1: 1: 0.1$ EtOAc/hexane/acetic acid) to give 23 ($12.4 \mathrm{mg}, 73 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO) $\delta 1.32(\mathrm{~s}, 3 \mathrm{H}$), $3.03(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.09$ (m, 2 H$), 7.19-7.26$ (m, 3 H), $7.42-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.79$ ($\mathrm{m}, 2 \mathrm{H}$), $8.16(\mathrm{~s}, 1 \mathrm{H}), 12.44(\mathrm{~s}, 1 \mathrm{H})$; MS (EI) $283\left(1.6, \mathrm{M}^{+}\right)$, 192 (22), 105 (100), 91 (13); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$ 283.1208, obsd 283.1202.

Acknowledgment. Financial support from the National Institutes of Health (CA 62034) and the University of Nebraska-Lincoln Research Council is gratefully acknowledged. The NSF Chemical Instrumentation Program (CHE 9300831) generously provided funds for the purchase of the departmental GC/MS. M.K.S. is the recipient of a Patricia Roberts Harris Fellowship from the U.S. Department of Education (P094B30120). The authors thank Jeffery M. Atkins (University of Nebraska Undergraduate Research Program) for assistance with several experiments and Dr. Ron Cerny of the Nebraska Center for Mass Spectrometry for highresolution mass spectra.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR spectra for compounds $13,14,18,19$, and 23 , as well as of 9 , both before and after recrystallization (7 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO941774Z

[^7]
[^0]: + Presented, in part, at the 208th National Meeting of the American Chemical Society: Washington, DC; Aug 21-25, 1994; Abstract 0-38.
 * Abstract published in Advance ACS Abstracts, February 1, 1995.
 (1) Sales of Aldomet reached over \$140 million in 1990: Stinson, S. C. Chem. Eng. News 1992, 252, 46-79.
 (2) Khosla, A.; Stachowiak, K.; Smeby, R. R.; Bumpus, F. M.; Piriou, F.; Lintner, K.; Fermandjian, S. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 757-760.
 (3) (a) Valle, G.; Crisma, M.; Toniolo, C.; Beisswenger, R.; Rieker, A.; Jung, G. J. Am. Chem. Soc. 1989, 111, 6828-6833. (b) Altmann, K.-H.; Altmann, E.; Mutter, M. Helv. Chim. Acta 1992, 75, 1198-1210.

[^1]: (10) In the case of the Schöllkopf chiral alanine equivalent, ${ }^{5}(R)$ - or (S)-valine methyl ester may be recovered in the deprotection procedure and used to recontruct the bis-lactim ether, in several steps. ${ }^{5 a}$
 (11) Krapcho, A. P.; Dundulis, E. A. Tetrahedron Lett. 1976, 22052208.
 (12) (a) Pedersen, M. L.; Berkowitz, D. B. J. Org. Chem. 1993, 58, 6966-6975. (b) Pedersen, M. L.; Berkowitz, D. B. Tetrahedron Lett. 1992, 33, 7315-7318.
 (13) (a) Davenport, K. D.; Mao, D. T.; Richmond, C. M.; Bergbreiter D. E.; Newcomb, M. J. Chem. Res., Synop. 1984, 148-149; J. Chem. Res., Miniprint 1984, 1518-1530. (b) Note: In the course of this work, a "reinvestigation" of the Bergbreiter/Newcomb study appeared: McIntosh, J. M.; Thangarasa, R.; Foley, N. K.; Ager, D. J.; Froen, D. E. Kix, R. C. Tetrahedron 1994, 50, 1967-1974. These workers alkylated chiral N-benzoylglycine-derived dianions, including one example with a phenylmenthyl auxiliary. No alkylations leading to quaternary centers and, hence, to α-branched amino acids were reported.

[^2]: (14) Ojima, I.; Habus, I.; Zhao, M.; Georg, G.; Jayasinghe, L. R. J. Org. Chem. 1991, 56, 1681-1683.
 (15) For a thorough review of the use of this and related auxiliaries, see: Whitesell, J. K. Chem. Rev. 1992, 92, 953-964.
 (16) Max, J. Liebigs Ann. Chem. 1909, 369, 276-286.
 (17) In all three cases, starting from optically pure N-benzoyl-(S)alanine, a mixture of diastereomeric esters, epimeric at the α-center, is obtained. The fact that the diastereomeric ratio varied from $1: 1$ to 2.2:1 ($\alpha-S: \alpha-R$), as function of the chiral alcohol, argues against racemization of the acid chloride as a likely mechanism for the observed loss of stereochemical integrity. Indeed, these results raise the interesting possibility that esterification may proceed via the initial generation of a ketene upon thermolysis of the amino acid chloride. At any rate, the fact that diastereomeric esters are obtained in this step is of no consequence here. ${ }^{21}$
 (18) Harada, K.; Hayakawa, T. Bull. Chem. Soc. Jpn. 1964, 37, 191194.

[^3]: (19) Attempts to deprotonate 2 with excess LDA (>5 equiv) at -78 ${ }^{\circ} \mathrm{C}$ resulted in incomplete deuterium incorporation at the α-position upon quenching with d_{4}-methanol- $\mathrm{DCl} .^{20}$ By contrast, deprotonation of $1-3$ by sequential treatment with LDA (1 equiv, to deprotonate the amide NH) and n-butyllithium (2 equiv, to deprotonate both the diisopropylamine produced and the α-proton) at $-78^{\circ} \mathrm{C}$ led to complete incorporation of deuterium at C_{α}, using the same quench. Therefore, this latter deprotonation procedure was also employed for all alkylation reactions of 4-6.
 (20) Seebach and co-workers have shown that diisopropylamine molecules may be hydrogen-bonded to the α-C-atoms of certain LDAderived enolates, in the crystal. Upon quenching such enolates with an acidic deuterium source, internal proton delivery from associated diisopropylamine molecules may effectively compete with external delivery of deuterium from the quenching agent, resulting in incomplete labeling. We cannot rule out that such a mechanism is operative here. See: (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624-1654. (b) Laube, T.; Dunitz, J. D.; Seebach, D. Helv. Chim. Acta 1985, 68, 1373-1393.
 (21) As a control experiment, dianion 6 was generated by deprotonation of (i) the major diastereomer (3a, see Experimental Section), of (ii) the minor diastereomer 3b, and of (iii) the diastereomeric mixture (3a/3b). In each case, subsequent alkylation with benzyl bromide produced 9 in ca. 75% yield, as a $94: 6$ mixture of diastereomers.
 (22) Diastereomeric ratios were determined by integration of resolved signals in the ${ }^{1} \mathrm{H}$ NMR spectra of the diastereomeric mixtures. In all cases examined, these were in very good agreement with the enantiomeric ratios obtained (from optical rotations) for the fully deprotected α-methyl amino acids.

[^4]: (23) Solladié-Cavallo, A.; Csaky, A. G.; Gantz, I.; Suffert, J. J. Org. Chem. 1994, 59, 5343-5346.
 (24) In these cases, stereochemistry at C_{a} is presumed to be S, by analogy with the cases of α-methylphenylalanine, α-methylleucine, and α-methyl aspartate, for all of which the S isomer is produced.
 (25) The yields obtained here for the simultaneous cleavage of the N -benzamide and the hindered ester protecting groups are quite modest (ca. 40-60\%; see Experimental Section). In contrast, typical yields for the cleavage of an N-benzoyl- or N-acetylamino protecting group from unhindered esters of α-branched amino acids are in the $70-90 \%$ range [See: (a) ref 12a. (b) Saito, H.; Tahara, Y.; Toyoda, M. Agric. Biol. Chem. 1988, 52, 2349-2350. (c) Pines, S. H.; Karady, S.; Kozlowski, M. A.; Sletzinger, M. J. Org. Chem. 1968, 33, 1762-1767].
 (26) Buschmann, H.; Scharf, H.-D. Synthesis 1988, 827-830.

[^5]: (27) San Filippo, J., Jr.; Romano, L. J.; Chern, C.-I.; Valentine, J. S. J. Org. Chem. 1976, 41, 586-588.
 (28) Winkle, M. R.; Lansinger, J. M.; Ronald, R. C. J. Chem. Soc., Chem. Commun. 1980, 87-88.
 (29) Ort, O. Org. Synth. 1987, 65, 203-213.

[^6]: (30) (a) Smeets, J. H. W.; Kieboom, A. P. G. Recl. Trav. Chim. PaysBas 1992, 111, 490-495. (b) Miyashita, A.; Takaya, H.; Souchi, T.; Noyori, R. Tetrahedron 1984, 40, 1245-1253.
 (31) Schwartz, A.; Madan, P.; Whitesell, J. K.; Lawrence, R. M. Org. Synth. 1990, 69, 1-9.

[^7]: (32) Cativiela, C.; Diaz-de-Villegas, M. D.; Galvez, J. A. Tetrahedron: Asymmetry 1994, 5, 261-268.
 (33) Kruizinga, W. H.; Bolster, J.; Kellogg, R. M.; Kamphuis, J.; Boesten, W. H. J.; Meijer, E. M.; Schoemaker, H. E. J. Org. Chem. 1988, 53, 1826-1827.

